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Abstract
Ideas and techniques (asymptotic decoupling of single-trace subspace,
asymptotic operator algebras, duality and role of supersymmetry) relevant in
current Fock space investigations of quantum field theories have very simple
roles in a class of toy models.

PACS number: 11.15.Pg

(Some figures in this article are in colour only in the electronic version)

Hamiltonian methods have a long history in the attempts to understand the bound states
spectrum of a strongly interacting relativistic quantum field theory. This is perhaps the hardest
and most important problem in a strongly interacting quantum field theory and analytic and
numerical efforts were devoted to inventing reliable methods. For several years light-front
quantization [1] was a promising approach because of the very different nature of the ground
state and some important simplifications of the operators occurring in the Hamiltonian of
non-Abelian models.

The analysis of the large-N limit, at t’Hooft coupling fixed, of the models with SU(N)

or U(N) invariance provided additional insights, indicating features of string theory in non-
Abelian gauge models and the existence of symmetries, conserved quantum numbers and
operator algebras occurring only in the asymptotic theory, at N = ∞, [2, 3, 6, 12]. Much
work was devoted to the evaluation of the spectrum of the Hamiltonian for states in the lowest
representation of the group: the singlet sector and the adjoint sector.

A colour-singlet state of n free bosons, with total momentum �P is represented in the Fock
space by a linear superposition of states of the form

tr
(
a†(k1) · · · a†(kn1

))
tr

(
a†(p1) · · · a†(pn2

)) · · · tr
(
a†(q1) · · · a†(qns

)) |0〉 (1)

where tr ( ) denotes the trace on U(N) colour indices, n = n1 + n2 + · · · + ns,P =∑
kj +

∑
pj + · · · +

∑
qj and a†(k) are creation operators. These states are called

multi-trace states. Matrix-valued operators may be written in terms of the group generators
a(k) = ∑

a λaaa(k), a†(k) = ∑
a λaa

†
a(k), and all matrix-related coefficients are efficiently
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evaluated by graphic methods [5, 9]. Several remarkable properties were found in the
large-N limit. Operators normally-ordered inside a single trace, that is of the form
γ = N−(r+s−2)/2 tr(a†(k1) · · · a†(kr )a(p1) · · · a(ps)), acting on single-trace states generate
single-trace states [6], provided r � 1 and s � 1. Then if the Hamiltonian is a linear
combination of such operators, the subspace of the Fock space spanned by single-trace states
is invariant under the action of the Hamiltonian. These operators and analogous ones involving
fermion operators act on single-trace states in a way reminiscent of the coupling of strings.
Single-trace states like |n〉 = N−n/2n−1/2 tr(a†(k1) · · · a†(kn))|0〉 form an orthonormal basis
in the colour-singlet and single-trace Fock space [4]. Multi-trace states like in equation (1)
provide an orthonormal basis in the singlet-singlet Fock space at N = ∞ [4].

Recently G Veneziano and J Wosiek [7] have suggested a supersymmetric model in D = 1
spacetime dimension, that is a matrix quantum-mechanical model. It is not surprising that
the model is analytically solvable in the large-N limit in several sectors of the Fock space
and reliable numerical evaluations may be performed in other sectors. Several features of the
bound states are very interesting.

The goal of this paper is to use results derived in a recent analysis of the bosonic sector of
the model [8] and in a simple generalization presented here, to comment on the properties of
V–W Hamiltonian with a view to the role they may have in models in more realistic spacetime
dimension.

In the bosonic sector the Hamiltonian of the V–W model is

H = tr(a†a + g(a†2a + a†a2) + g2a†2a2), λ = g2N. (2)

In the single trace sector of the singlet states, for large N, the Hamiltonian is a tridiagonal
real symmetric infinite matrix. The bound states spectrum was analytically and numerically
solved in the large-N limit for every λ � 0 and it presents remarkable features:

• the infinitely many eigenvalues of the discrete spectrum of the model, for 0 � λ < 1
decrease in a monotonous way as λ increases and all vanish at λ = 1, where a phase
transition occurs. For λ > 1 one eigenvalue remains at zero energy, it is a new ground
state, and the infinitely many eigenvalues increase in a monotonous way as λ increases.

• The non-zero eigenvalues at the pairs of values λ and 1/λ are related by a duality property
1√
λ

(En(λ) − λ)) =
√

λ

(
En

(
1√
λ

)
− 1

λ

)
. (3)

Let us consider the trivial generalization of equation (2) by allowing two coupling
constants3

H = tr
(
a†a + g3(a

†2a + a†a2) + g2
4a

†2a2
)
,

√
λ3 = g3

√
N, λ4 = g2

4N. (4)

Here too the single-trace sector in the Fock space decouples in the large-N limit and the
Hamiltonian is represented by the tridiagonal real symmetric infinite matrix H(λ3, λ4)

Hj,j+1 = Hj+1,j =
√

λ3

√
j (j + 1),

Hj,j = (1 + λ4(1 − δ1j ))j, j = 1, 2, . . . .
(5)

The eigenvalue equation Hx = Ex is a system of recurrent relations which translates into an
easy differential equation for the generating function G(z) = ∑∞

1 yj z
j where xj = yj

√
j .√

λ3ω(z)G′(z) − EG(z) − (
zλ4 +

√
λ3

)
G′(0) = 0,

where

ω(z) = z2 + 1 + z(1 + λ4)/
√

λ3.

3 Since the cubic term in the Hamiltonian (4) is odd under the unitary transformation a → −a and a† → −a†, the
spectrum of H is independent of the sign of g3; hence we assume g3 � 0 with no loss of generality.
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Figure 1. The line λ3 = λ4 corresponds to the V–W model.

If (1 + λ4)
2 − 4λ3 > 0, ω(z) has 2 distinct real roots. The closest to the origin z = 0

translates into the asymptotic behaviour of the coefficients xj . The integration constant
of the differential equation may be chosen to kill the closest singularity then obtaining an
exponentially decreasing sequence xj , hence normalizable bound states.

The region of the quadrant λ3 � 0 and λ4 � −1 where the spectrum is discrete lies above
the parabola of equation 4λ3 = (1 + λ4)

2, shown by the black line in figure 1.
The solution has a compact form in terms of the variables σ and η

σ = 1 + λ4 −
√

(1 + λ4)2 − 4λ3

1 + λ4 +
√

(1 + λ4)2 − 4λ3

, η = λ4(1 + λ4) + λ4

√
(1 + λ4)2 − 4λ3 − 2λ3

2λ4

√
(1 + λ4)2 − 4λ3

.

The eigenvalues En of normalizable states are the infinitely many solutions of the equation

F(α, 1; 1 + α; σ) = η, 0 < σ < 1,

where

F(α, 1; 1 + α; σ) = 1 + α

∞∑
k=1

σ k

α + k
, α = − E√

(1 + λ4)2 − 4λ3

.

It is easy to check that the hypergeometric function F(α, 1; 1 + α; σ) satisfies the translation
identity

F(α, 1; 1 + α; σ) = 1 +
ασ

1 + α
F(α + 1, 1; 2 + α; σ). (6)

The plot in figure 2 shows the Hypergeometric function F(α, 1; 1 + α; σ) versus α for
fixed σ and −6 < α < 2.

In the space of parameters corresponding to bound states, let us consider the parabolas
of equation λ3 = σ̄

( 1+λ4
1+σ̄

)2
, see figure 1. At each point of the space of coupling constants

corresponding to the discrete spectrum there is a unique σ̄ . For a given parabola, it is easy to
describe the spectrum as we move along it from λ4 = 0 to λ4 = ∞. Indeed along this path,
the value of η increases in a monotonous way from η = −∞ to η = 0 at the point where it
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Figure 2. The graph shows F(α, 1; 1 + α; σ) for 3 values σ = 0.3, 0.5, 0.7 depicted with
increasingly dark colour.

first crosses the line λ4 = λ3, next it reaches η = 1 at the second crossing with the same line,
and continues increasing up to its asymptotic limit η = 1/(1 − σ̄ 2).

At η = −∞ the eigenvalue equation has infinitely many solutions of the form αn = −n+εn

where n = 1, 2, . . . and εn are small positive numbers. That is En = n(1 − σ̄ )/(1 + σ̄ ) − εn.
As η increases all roots αn move in a monotonous way to the right, that is each En decreases.
At η = 1, the value of α1 = 0 and E1 = 0. This bound state becomes degenerate with the
vacuum state |0〉 of the Fock space, which has E0 = 0. As η increases beyond η = 1, α1

increases to positive values and E1 has increasingly negative values4.
At the first crossing λ3 = λ4 = λ < 1, η = 0, σ̄ = λ and we may consider the roots αn +1

of the eigenvalue equation F(αn + 1, 1;αn + 2; λ) = 0. Because of the translation identity
equation (6) they are simply related to the roots αn of the eigenvalue equation at the second
crossing λ3 = λ4 = λ > 1, η = 1, σ̄ = 1/λ, which is F(αn, 1;αn + 1; 1/λ) = 1. This is the
V–W duality of equation (3).

This picture looks very different from the V–W spectrum but, of course, it is fully
compatible: in the V–W model the unique coupling moves along the line λ4 = λ3 and it
touches at λ = 1 the boundary of normalizable eigenstates.

We now briefly describe the solution of the 2-couplings model by use of a non-compact
Lie algebra which arises in the large-N limit.

Let us consider the Hamiltonian H̃ (α, β)

H̃ (α, β) = αD + 1
2β(J+ + J−),

Dij = jδij , (J+)ij =
√

j (j + 1)δi,j+1, J− = (J+)
†

J± = Jx ± iJy, α = 1 + λ4, β = 2
√

λ3.

The Hamiltonian H̃ (α, β) differs from the asymptotic Hamiltonian H(λ3, λ4) given
in equation (5) only for one matrix element H̃ 11 = H11 + λ4. One easily computes the
commutators [D, J±] = ±J± and [J+, J−] = −2D, showing that {D, J+, J−} form a basis
for the Lie algebra SO(2, 1) in the degenerate Bargmann’s discrete series representation
Dn

+, (n = 0),characterized by a vanishing Casimir operator. Hence the generator Jx has a
continuous spectrum filling the whole real axis [11].

4 Some readers may appreciate understanding the model without need of extensive numerical work.
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Previous results about the spectrum can be re-derived as follows: if α > β, one obtains

1√
α2 − β2

H̃ = cosh yD + sinh yJx, cosh y = α√
α2 − β2

and a unitary operator U (a boost) exists such that U 1√
α2−β2

H̃U−1 = D and the spectrum of

H̃ is simply En = n
√

α2 − β2.
If α < β, upon writing

1√
β2 − α2

H̃ = sinh yD + cosh yJx, cosh y = β√
β2 − α2

a unitary operator boosting H̃ to Jx exists, hence H̃ has a continuous spectrum. On the border
α = β, H̃ coincides with a light-cone generator which has a continuous (positive) spectrum
[11].

Finally the spectrum of the asymptotic Hamiltonian H(λ3, λ4) may be computed from the
spectrum of H̃ by the method outlined in the appendix of [8], based on an exact perturbation
formula (rank-1 perturbation).

Notice that the operators closing the SO(2, 1) algebra represent the restriction to the
single-trace states of more general operators acting on general singlet states. For instance
J+ → tr(a†2a)/

√
N . The operators (H, J+, J−) close a Lie algebra up to terms of order 1/N ,

hence the spectra can be discussed as arising from a dynamical symmetry breaking.
Let us summarize our conclusions:

• Hamiltonian models where each operator has the form Tr[(a†)nam] with n � 1 and m � 1
leave each sector of k-trace states invariant in the large-N limit. By representing the
Hamiltonian in the basis of single-trace states, one obtains a real symmetric fixed-width
band matrix. The eigenvalue equation is a system of recurrent equations which usually
allows analytic solution. Still multi-trace singlet sectors are not irrelevant because the
mass of bound states in these sectors is similar to that of the single-trace states. As
indicated in [8] the V–W bosonic Hamiltonian may be evaluated in each sector obtaining
the same eigenvalues, therefore changing (in infinite way) the degeneracy of eigenvalues
found in the single-trace analysis.

• In the simple models in D = 1 supersymmetry is not necessary for the asymptotic
decoupling of the single-trace sector nor for the exact asymptotic solution of the model.
However the duality property of the spectrum has a striking simple form only on the susy
line λ3 = λ4.

• Light-front quantization seems relevant for realistic models, that is in space-time
dimension 1 < D � 4, because it makes possible to represent a local Hamiltonian
in a partial normally ordered form [12] such that the single-trace sector of Fock space
may be asymptotically invariant. This is a practical necessity for the Tamm-Dancoff
approach. Exact or approximate algebras of the operators which occur in the asymptotic
Hamiltonian provide a precious tool for the understanding of the spectrum.

• When considering a local quantum mechanical Hamiltonian H = Tr[p2 + x2 + V (x)] in
the large-N limit, the Fock space methods seem inappropriate: one cannot avoid operator
terms that couple the single-trace states to multiple-trace states in leading order. This
makes any evaluation restricted to the single-trace Fock states totally unreliable [8, 10].

• At large N a new dynamical symmetry shows up, simplifying the calculation of the
spectrum. The interplay of this symmetry with supersymmetry as in V–W model deserves
further study.
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We add a last comment to indicate that the bosonic two-couplings model discussed in this
communication is the asymptotic generic form of infinitely many Hamiltonians.

Let us consider the operators Aj ,A
†
j ,Dj , j = 1, 2, . . .

A
†
j = 1

Nj−1/2
tr(a†(a†a)j ), Aj = 1

Nj−1/2
tr((a†a)ja),

Dj = 1

Nj−1
tr((a†a)j ).

It is easy to verify that asymptotically they leave the sector of the single-trace states invariant

Aj |n〉 ∼
√

n(n − 1)|n − 1〉 + O(1/N),

A
†
j |n〉 ∼

√
n(n + 1)|n + 1〉 + O(1/N),

Dj |n〉 ∼ n|n〉 + O(1/N).

Then all the Hamiltonians

H = tr(a†a) +
∑
j�1

gj,3 tr
(
A

†
j + Aj

)
+

∑
j�2

gj,4 tr(Dj )

asymptotically leave the sector of the single-trace states invariant and in this sector are all
represented by the tridiagonal real symmetric infinite matrix H(λ3, λ4) in equation (5) with√

λ3 = √
N

∑
j gj,3 and λ4 = N

∑
j gj,4. The sums may be finite or infinite.
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